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Microscopic theory of nonisothermal Brownian motion
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We present the statistical mechanical derivation of the Fokker-Planck equation for nonisothermal stochastic
processes. The analysis proceeds by applying nonlinear-process projection methods to a mesoscopic system
coupled to a heat bath. Our result provides a microscopic foundation for the phenomenological theory
@H. Dekker, Phys. Rev. A43, 4224~1991!# and generalizes the canonical Kramers model.
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I. INTRODUCTION

Nonisothermal Brownian motion is a stochastic proces
which, besides position and momentum, the~local! tempera-
ture is among the fluctuating variables. Since both mom
tum and thermal fluctuations are most prominent for sm
physical dimensions, such a process is a logical extensio
the theory of Brownian motion to mesoscopic systems w
small heat capacitance, where energy density rather tha
cal temperature is the conserved slow variable. A phen
enological analysis was first given by one of us in Re
@1,2#. Using fluctuation-dissipation arguments, mechani
and thermal noise were added to the deterministic evolu
equations such that the total Fokker-Planck operator sup
edly possessed the known equilibrium distribution
involving the availability @3#—as its stationary solution
Various limiting cases and approximations of the formali
were presented and applied to lifetime calculation proble
in Josephson devices. In the thermally isolated case the
sults showed a substantial barrier~and, therefore, lifetime!
enhancement.

In this paper we give a microscopic derivation of nonis
thermal Brownian motion. We concentrate on establish
the general equations rather than on specific cases.
analysis proceeds by means of nonlinear-process~i.e., suit-
able for nonlinear fluctuations! projectors, as outlined in
Sec. II. By weakly coupling a mesoscopic system~e.g., a
superconducting quantum interference device! to a heat bath,
its microcanonically fixed energyE becomes a random var
able ~along with x and p), yielding the general nonlinea
stochastic process in Sec. III. Upon introducing a novel m
force term~different from the free energy gradient! a Fokker-
Planck equation~FPE! modeling as in@1,2# is reconciled
with ensemble theory—while originally starting from an i
correct equilibrium distribution, cf. Sec. IV—even slight
beyond its initial scope~viz., to nonconstant transport coe
ficients!. Some final remarks are made in Sec. IV. An e
haustive account of the theory can be found in Ref.@4#.
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II. NONLINEAR-PROCESS PROJECTORS

Consider a classical dynamical system with Hamilton
H, the microscopic state being represented by a pointG in its
phase spaceP. The time evolution of gross variable
a5$ai%—defined microscopically as phase space functio
a5A(G)—is stochastic since, for an initialmacrostate a, the
microstateis only constrained toS(a)[$GuA(G)5a%. Pa-
rametrizing each such hypersurface by coordinatesVa @so
that G5(a,Va) anddG5dadVa#, it is possible to average
over the initial value ofVa once the initial probability den-
sity on S(a) is known. We suppose the system to have
equilibrium distribution r̄(G), i.e., Lr̄(G)[$H(G),
r̄(G)%50 (L is the Liouville operator!, and take the initial
distribution r(G,0) from the stationary preparation class:
r(G,0)5P(a,0)w̄(a,Va), with the stationary conditiona
densityw̄(a,Va)5 r̄/*dVar̄.

Given an ensemble of systems, all in the macrostatea,
one can introduce the reversible driftv(a)5
*dVaw̄(a,Va)Ȧ(a,Va), with Ȧ52LA. However, the indi-
vidual members in general evolve with velocityȦ(a,Va)
Þv(a) and also *dVaw(a,Va ,t)Ȧ(a,Va)Þv(a), since
w(a,Va ,t) typically differs from w̄ even if the ensemble is
the subset withA(G)5a of a larger one from the stationar
preparation class. In addition to the driftv there thus is a
diffusive current, as will be seen in the projection opera
formalism @5,6#.

The set of all phase space functions is made into a Hilb
spaceH by introducing the inner product

^X,Y&5E dGw̄~G!X~G!Y~G!. ~1!

One then defines the projector

~PX!~G!5E daCa~G!^Ca,X&, ~2!

with Ca(G)5d„A(G)2a…, which allows decomposition o
the evolution operator into a ‘‘drift,’’ a ‘‘dissipative,’’ and a
‘‘noise’’ part as
6257 © 1997 The American Physical Society
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e2Lt5e2LtP2E
0

t

dseL~s2t !PLQe2L̂sQ1Qe2L̂tQ, ~3!

whereQ512P, L̂5QLQ.
Given an initial distribution from the stationary prepar

tion class, and withr(G,t)5eLtr(G,0), the evolution of the
macroscopic distributionP(a,t)5*dGCa(G)r(G,t) obeys

] tP~a,t !52]ai@v i~a!P~a,t !#1E
0

t

ds]aiE da8Di j ~a,a8,s!

3 P̄~a8!]aj8

P~a8,t2s!

P̄~a8!
, ~4!

with

v i~a!5^Ca,Ȧi&, ~5!

Di j ~a,a8,s!5^Ca8Ȧj ,Qe2L̂sQCaȦi& ~6!

for the drift and diffusion kernels, respectively.
Equation ~4! is still exact, and approximations must b

introduced. Following Refs.@1,2# we are interested in the
Markovian limit ~ML !, wherein the kernels~6! rapidly decay
to zero so thatP(a,t) can be taken outside boths and a8
integrals. This yields the FPE

] tP~a,t !52]ai@v i~a!P~a,t !#

1]ai@Ki j ~a!P̄~a!]aj„P̄~a!21P~a,t !…#, ~7!

with

Ki j ~a!5E
0

`

dsE da8Di j ~a,a8,s!

5^Ȧj ,QL̂21QCaȦi&, ~8!

where the last line follows from Eq.~6!. SinceL̂ has the null
spacePH, L̂21 is defined only inQH and only in that sub-
space will this notation be used. With Eq.~5! for v(a) one
has]ai@v i(a) P̄(a)#50 @5#, so thatP̄ is an exact stationary
solution of the approximate Eq.~7!.

III. NONISOTHERMAL KRAMERS EQUATION

We write G t5(G0 ,Gb) for the coordinates of ‘‘system
plus bath,’’ whereinG05(x0 ,p0 ,G1) with G15(xi ,pi) i>1.
The Hamiltonian is taken to be

H t~G t!5H0~G0!1Hb~Gb!1H1~$xi%,$xb,j%!, ~9!

where

H0~G0!5(
i>0

pi
2

2mi
1F~$xi%!, ~10!

yielding

L05
]F~$xi%!

]xj
]pj2

pj
mj

]xj . ~11!
The bath is taken to be infinite, so that the canonical
semble will be used for the total system, i.e., the microsco
equilibrium density reads

r̄ t~G t!5Zt
21e2brH t~G t!, ~12!

where

Zt5E dG te
2brH t~G t!, ~13!

with b r the inverse reservoir temperature. To derive
Brownian thermodynamics, we define the observables
a5(x,p,E)5„x0 ,p0 ,H0„G0)…. This choice is appropriate i
m5m0@mi>1, so that the 0 particle is much slower than t
other ones. The couplingH1 is taken infinitesimal—only
then a picture of the total system as ‘‘matrix plus reservo
~Fig. 1 of Refs. @1,2#! is meaningful. This leads to
Zt'Z0Zb; for the equilibrium macrodistribution it implies

P̄~x,p,E!5
e2brE

Z0
E dG1d„H0~G0!2E…

5exp$Sm~x,p,E!1b r@F0~b r!2E#%

5exp$b r@F0~b r!2Am~x,p,E,b r!#%, ~14!

with the microcanonical availability@3,7# defined by

Am~x,p,E!5E2TrSm~x,p,E!

5Fm~x,p,E!1„T~x,p,E!2Tr…Sm~x,p,E!,

~15!

where

Sm~x,p,E!5 lnE dG1d„H0~x,p,G1!2E… ~16!

is the conditional entropy, T 215]ESm(x,p,E), and
Fm5E2TSm, while F052TrlnZ0 is the unconditional free
energy.

To lowest~i.e., zeroth! order inH1, the (x,p) dynamics at
a given point (x8,p8,E8) in macroscopic state space coi
cides with the microcanonical one. Hence, both the dr
v i(x8,p8,E8) and the diffusion tensorKi j (x8,p8,E8) ~with
i , j5x,p) are calculated in the ensemble wi
r̄m(G0)5Zm

21d(H0(G0)2E8). In particular,vp5 f with

f ~x,p,E!5e2Sm~x,p,E!]xE
2`

E

dE8eSm~x,p,E8! ~17!

while vx5p/m. For the evolution ofE itself the coupling
H1 must be considered. From Eq.~5! one obtains

vE5^Ca,Ḣ0&50 for the energy drift by time reversal sym
metry. Taking the ML also for theE diffusion, we arrive at
the nonisothermal FPE
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] tP~x,p,E,t !5F2
p

m
]x1]p$2 f1KeSm]pe

2Sm%

1]EMe2brAm]Ee
brAmGP~x,p,E,t !

~18!

with Kpp5K ~otherKi j are zero, forQẋ50), viz.,

K~x,p,E!5^]x0F1 f ~x,p,E!,L̂t21d~x02x!d~p02p!

3d„H0~G0!2E…„]x0F1 f ~x,p,E!…& ~19!

and with the energy diffusion coefficient

M ~x,p,E!5^Ḣ0 ,L̂t21d~x02x!d~p02p!

3d„H0~G0!2E…Ḣ0&. ~20!

IV. FINAL REMARKS

Rewriting the momentum diffusion term in Eq.~18! as

]pKe
Sm]pe

2Sm5]p
K

mT ~p1mT ]p!, ~21!

the friction coefficient may be identified a
2l5K/mT @1,2#. However, the effectivel in the Smolu-
chowski limit in general acquires both position and tempe
ture dependence even if taken constant in Eq.~18!. Similarly,
the heat diffusion term allows the introduction
k5M /T Tr as the heat conductance. Equation~18! may also
serve as a starting point for further approximations, study
concrete models~e.g., to calculate lifetimes of metastab
states!, etc., without evaluating microscopic expressions
of
-

g

s

~19! or ~20!, which, however, do restrict the freedom
model the various coefficients@4#. For example, onlyM can
have an additional dependence onTr , while f is entirely
fixed bySm; see Eq.~17!.

The present microscopic theory is a ‘‘necessarily mod
contribution’’ ~Ref. @2#, Sec. 5!. For example, quantum ef
fects are not incorporated. Hence, the study of macrosc
quantum tunneling@8–10# in the nonisothermal regime, o
the justification of Eq. ~18! when the functions
$ f ,Sm,K,M % cannot be calculated in the classical appro
mation, is still beyond reach. The latter will, e.g., be releva
to superconductivity, but quantum features will show up
low temperatures also in other systems. While at lowT the
present results satisfy the minimal requirement of being w
defined (T50 constitutes a natural boundary in Eq.~18!; see
Ref. @4#! our analysis should be carried further to the qua
tum caseà la Caldeira and Leggett@9#.

Our derivation of Eq.~18! generalizes the formulas o
Refs. @1,2# to position and temperature dependent transp
coefficients. By founding our analysis on statistical mech
ics we have ensured that the results are compatible with c
sical equilibrium statistics. This solves a problem wi
Ref. @2#, where the stationary measure is taken
P̄}exp$2brA%dxdpdS instead of the correct P̄
}exp$2brAm%dxdpdE @see Eq.~14!#, the difference being
nontrivial for genuine nonlinear fluctuations.

In conclusion, the present work connects the theory
nonisothermal stochastic processes to conventional statis
mechanics.
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