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Microscopic theory of nonisothermal Brownian motion
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We present the statistical mechanical derivation of the Fokker-Planck equation for nonisothermal stochastic
processes. The analysis proceeds by applying nonlinear-process projection methods to a mesoscopic system
coupled to a heat bath. Our result provides a microscopic foundation for the phenomenological theory
[H. Dekker, Phys. Rev. A3, 4224(1991)] and generalizes the canonical Kramers model.
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I. INTRODUCTION II. NONLINEAR-PROCESS PROJECTORS

Consider a classical dynamical system with Hamiltonian

h[\l?]msoth;rmal B.rtpwnlar:j motion 'f a sto%\ast:c Process Iy 'the microscopic state being represented by a doiintits
which, besides position and momentum, {reeal) tempera- phase spacdl. The time evolution of gross variables

ture is among the fluctuating variables. Since both momenéz{ai}—defined microscopically as phase space functions
tum and thermal fluctuations are most prominent for SmaILa:A(F)—is stochastic since, for an initialacrostate athe

physical dimensions, such a process is a logical extension ¢ficrostateis only constrained t&(a)={I'|A(I')=a}. Pa-
the theory of Brownian motion to mesoscopic systems withgmetrizing each such hypersurface by coordinggs[so
small heat capacitance, where energy density rather than lgnat "= (a,0,) anddl'=dadQ,], it is possible to average
cal temperature is the conserved slow variable. A phenomgyer the initial value o), once the initial probability den-
enological analysis was first given by one of us in Refs.sity on S(a) is known. We suppose the system to have an
[1,2]. Using fluctuation-dissipation arguments, mechanicakquilibrium  distribution p(T), i.e., Lp(T)={H(),
and thermal noise were added to the deterministic evqutioWr)}zo (L is the Liouville operator, and take the initial
equations such that the total Fokker-Planck operator suppostistribution p(I",0) from the stationary preparation class
edly possessed the known equilibrium distribution—p(I",0)=P(a,0)w(a,(),), with the stationary conditional
involving the availability [3]—as its stationary solution. densityw(a,Q,)=p/[dQ.p.

Various limiting cases and approximations of the formalism Given an ensemble of systems, all in the macrossate
were presented and applied to lifetime calculation problem®ne can introduce the reversible driftv(a)=

in Josephson devices. In the thermally isolated case the rgd( w(a,Q,)A(a,Q,), with A= — LA. However, the indi-
sults showed a substantial barri@nd, therefore, lifetime  \;q,al members in general evolve with veIociA(a Q)

enhancement. . . o _#p(a) and also [dQ,w(a,Q,,0)A(a,Q,)#v(a), since
In this paper we give a microscopic derivation of nonlso-W(a Q..1) typically differs fromw even if the ensemble is
thermal Brownian motion. We concentrate on establishinglhe éubas’;et WithA(T') = a of a larger one from the stationary

the general equations rather than on specific cases. T}b‘?eparation class. In addition to the driftthere thus is a

analysis proceeds by means of nonlinear-pro¢ess suit- it sive current, as will be seen in the projection operator
able for nonlinear fluctuatiomsprojectors, as outlined in formalism[5,6].

Sec. Il. By weakly coupling a mesoscopic systéeg., a

superconducting quantum interference deytoea heat bath,
its microcanonically fixed energy becomes a random vari-
able (along with x and p), yielding the general nonlinear
stochastic process in Sec. Ill. Upon introducing a novel mean (X,Y)= J dTw(T)X(T)Y(T). (1)
force term(different from the free energy gradigm Fokker-

Planck equationFPE modeling as in[1,2] is reconciled

with ensemble theory—while originally starting from an in- One then defines the projector

correct equilibrium distribution, cf. Sec. IV—even slightly

beyond its initial scopéviz., to nonconstant transport coef-

ficients. Some final remarks are made in Sec. IV. An ex- (px)(r):J daw¥(I') (w2 X), 2)
haustive account of the theory can be found in Ré&f.

The set of all phase space functions is made into a Hilbert
spaceH by introducing the inner product

with ¥3(I") = 8(A(I") —a), which allows decomposition of
*Electronic address: alec@phy.cuhk.edu.hk the evolution operator into a “drift,” a “dissipative,” and a
"Present address. “noise” part as
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o t (1) e ks The bath is taken to be infinite, so that the canonical en-
e fl=g Lp— Jl)dsec PLQe 0+ Qe ™Q, (3)  semble will be used for the total system, i.e., the microscopic
equilibrium density reads

whereQ=1-7P, L=0QLOQ. .

Given an initial distribution from the stationary prepara- p(TY=2; te AT, (12
tion class, and withp(T",t) =e*'p(T",0), the evolution of the
macroscopic distributiof?(a,t) = [dI'"'¥*(I")p(I",t) obeys where

t
aIP(a,t)=—(9ai[vi(a)P(a,t)]+fodsﬁaiJ da'Djj(a,a’,s) Zt:f dr e AT, 13
— P(a’,t—s)
XP(a’)dy, P (49 with B, the inverse reservoir temperature. To derive a
( Brownian thermalynamics, we define the observables as
with a=(x,p,E)=(Xg,po.Ho(0)). Th.is cr_]oice is appropriate if
m=mgy>m;~1, SO that the O particle is much slower than the
vi(a)=(P2A), (5)  other ones. The couplingl, is taken infinitesimal—only
then a picture of the total system as “matrix plus reservoir”
Dij(a,a’,s)z(\lfa"Aj,Qe’ZSQ\Ifa'AQ (6) (Fig. 1 of Refs.[1,2]) is meaningful. This leads to

Z,~Z7yZ,; for the equilibrium macrodistribution it implies
for the drift and diffusion kernels, respectively.

Equation(4) is still exact, and approximations must be _ e~ BE
introduced. Following Refs[1,2] we are interested in the P(x,p.E)=— Jdrl5(Ho(Fo)—E)
Markovian limit (ML), wherein the kernel) rapidly decay 0
to zero so thaP(a,t) can be taken outside bothanda’ =exp{Sn(x,p,E)+ B[Fo(B)—E]}

integrals. This yields the FPE

—explBIFo(B) — An(X.P.EB)T}, (14
aP(at)=—d,[vi(a)P(at)]

— - with the microcanonical availabilit}3,7] defined by
+0,[Kij(2)P(a)da (P(a) " "P(a,t)], (7)

.Am(X,p,E) =E- TrSm(X1 p=E)

- = Fn(X,p,E) + (7(x,p,E) = T)Sm(X,p,E),
Kij(a)=f0 de da,Dij(a,a,,S) (15)

with

=(A;, QL 1QPA), (8)  where

where the last line follows from Ed6). SinceL has the null
spacePH, £~ ! is defined only inQH and only in that sub- Sm(X,IO.E)=|nf dl'10(Ho(x,p,I'1) —E) (16)
space will this notation be used. With E&) for v(a) one

hasd,[vi(a)P(a)]=0 [5], so thatP is an exact stationary is the conditional entropy, 7 1= dcS.(x,p,E), and

solution of the approximate Eg7). Fm=E—1S,,, while Fy=—T,InZ, is the unconditional free
energy.
lII. NONISOTHERMAL KRAMERS EQUATION To lowest(i.e., zeroth order inH4, the (x,p) dynamics at

a given point &’,p’,E’) in macroscopic state space coin-
cides with the microcanonical one. Hence, both the drifts
vi(x',p’,E") and the diffusion tensoK;;(x',p’,E") (with
i,j=x,p) are calculated in the ensemble with
H(T)=Ho(To)+HpTp)+Hi({x},{Xp; ), (9) pm(T0)=Zy 8(Ho(Io) —E’). In particular,v,=f with

We write I't=(T"g,I"p) for the coordinates of “system
plus bath,” whereinl’g=(Xq,pg,I"1) with T'y=(X; ,pi)i=1-
The Hamiltonian is taken to be

where £ ,
2 f(x,p,E)=e*Sm(X*p'E>&xf dE’eSm*PE) (17)
p. — 0
Ho(To)= 2 5 -+ @ ({xi}), (10
= i
while v,=p/m. For the evolution ofE itself the coupling
yielding H, must be considered. From Eq5) one obtains
P ve=(V?Hy)=0 for the energy drift by time reversal sym-
50:M0 — &,;X__ (11)  metry. Taking the ML also for th& diffusion, we arrive at
ax; Pomp the nonisothermal FPE
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P(x,p,E,t)=| — %ﬁﬁ It —f+ Kesmﬂpe‘sm}

+ ggMe ™ PrimgePrim| P(x,p,E, 1)
(18)
with K,,=K (otherK;; are zero, forx=0), viz.,

K(x,p,E)=(dx, @+ f(x,p.E),L; *8(Xo—X) 8(Po—p)

X 6(Ho(To) —E)(0x, P +f(x,p,E))) (19
and with the energy diffusion coefficient
M(x,p.E)=(Ho.,L; *8(Xo—X) 8(Po—P)
X 8(Ho(T'o) ~ E)Ho).- (20

IV. FINAL REMARKS

Rewriting the momentum diffusion term in E(L8) as
Kedmg e~ Sm= < T 21
dpKemipe™ =gy —=(p+mT dp), (21)

the friction coefficient may be
2\=K/m7 [1,2]. However, the effective\ in the Smolu-

identified as
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(19) or (20), which, however, do restrict the freedom to
model the various coefficienfd]. For example, onl\M can
have an additional dependence ®p while f is entirely
fixed by S,,; see Eq(17).

The present microscopic theory is a “necessarily modest
contribution” (Ref. [2], Sec. 5. For example, quantum ef-
fects are not incorporated. Hence, the study of macroscopic
guantum tunneling8-10 in the nonisothermal regime, or
the justification of Eq. (18) when the functions
{f,S8n,K,M} cannot be calculated in the classical approxi-
mation, is still beyond reach. The latter will, e.g., be relevant
to superconductivity, but quantum features will show up at
low temperatures also in other systems. While at {bithe
present results satisfy the minimal requirement of being well
defined (/=0 constitutes a natural boundary in Ef8); see
Ref. [4]) our analysis should be carried further to the quan-
tum casea la Caldeira and Leggef®].

Our derivation of Eq.(18) generalizes the formulas of
Refs.[1,2] to position and temperature dependent transport
coefficients. By founding our analysis on statistical mechan-
ics we have ensured that the results are compatible with clas-
sical equilibrium statistics. This solves a problem with
Ref. [2], where the stationary measure is taken as
Pxexp{—B.4}dxdpdS instead of the correct P
cexpg— B AntdxdpdE[see Eq.(14)], the difference being
nontrivial for genuine nonlinear fluctuations.

In conclusion, the present work connects the theory of
nonisothermal stochastic processes to conventional statistical

chowski limit in general acquires both position and temperamechanics.

ture dependence even if taken constant in(Eg). Similarly,
the heat diffusion term allows the
x=MI/TT, as the heat conductance. Equati@8) may also

introduction of
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